

## 2.° BIMESTRE - 2014



| ESCOLA MUNICIPAL: |        |
|-------------------|--------|
| NOME:             | TURMA: |

## EDUARDO PAES PREFEITURA DA CIDADE DO RIO DE JANEIRO

## CLAUDIA COSTIN SECRETARIA MUNICIPAL DE EDUCAÇÃO

#### REGINA HELENA DINIZ BOMENY SUBSECRETARIA DE ENSINO

## MARIA DE NAZARETH MACHADO DE BARROS VASCONCELLOS COORDENADORIA DE EDUCAÇÃO

#### ELISABETE GOMES BARBOSA ALVES MARIA DE FÁTIMA CUNHA COORDENADORIA TÉCNICA

#### IRINÉIA YURI IMAMURA ORGANIZAÇÃO E ELABORAÇÃO

FRANCISCO RODRIGUES DE OLIVEIRA GIBRAN CASTRO DA SILVA SIMONE CARDOZO VITAL DA SILVA REVISÃO

FÁBIO DA SILVA MARCELO ALVES COELHO JÚNIOR DESIGN GRÁFICO

**EDIOURO GRÁFICA E EDITORA LTDA.** EDITORAÇÃO E IMPRESSÃO



#### O que temos neste Caderno Pedagógico:

- Números racionais: dízima periódica, localização na reta numérica
- Números irracionais: comparação com os números racionais
- ➤ Expressões algébricas: variáveis e incógnitas, monômios e polinômios
- ➤ Equações de 1.º grau, equações indeterminadas
- ➤ Tratamento da informação
- ≻Ângulos
- ➤ Diagonais dos polígonos
- ➤ Perímetro e área de figuras planas









## Representação dos números racionais (Q)

Forma decimal e forma fracionária

Observe! Uma fração pode ser escrita na forma decimal.

#### **FORMA DECIMAL FINITA:**

$$\frac{8}{10} = 0.8$$

$$\frac{141}{100} = 1,41$$

$$\frac{8}{10} = 0.8$$
  $\frac{141}{100} = 1.41$   $\frac{3}{5} = 0.6$   $\frac{17}{8} = 2.125$ 

FORMA DECIMAL INFINITA E PERIÓDICA:



Período - corresponde

aos algarismos que se

repetem infinitamente,

na mesma ordem, em

uma dízima periódica.





Esses números são chamados de dízimas periódicas.

Em 0,444..., o período é 4. Em 0.363636...., o período é 36.



Todo número decimal finito, assim também, como toda dízima periódica, são números racionais?

AGORA. É COM VOCÊ



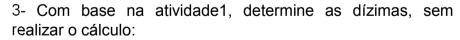
a) 
$$\frac{1}{9} =$$

c) 
$$\frac{4}{9} =$$

b) 
$$\frac{3}{9} =$$

d) 
$$\frac{5}{9} =$$

2- O que você observa, nessas dízimas, em relação ao numerador das frações correspondentes?



a) 
$$\frac{2}{9} =$$

c) 
$$\frac{7}{9} =$$

$$\frac{6}{9} =$$

d) 
$$\frac{8}{9} =$$



**Números Racionais** 

Conjunto @

## Fração geratriz - dízima periódica

A fração geratriz é aquela que dá origem a uma dízima periódica.

> Como eu encontro a fração geratriz de uma dízima?



Consideremos o número 0.777...

Chamamos a dízima de  $x \rightarrow x = 0.777...$ 

- Multiplicamos essa igualdade por  $10 \rightarrow 10x = 7.777...$
- Subtraindo a primeira igualdade da segunda,

Dividindo os dois membros por 9,

temos 
$$\to 9x : 9 = 7 : 9 \to x = \frac{7}{9}$$



E se o período for formado por dois algarismos? É o mesmo procedimento, sendo que multiplicaremos a dízima por 100.

- Chamamos a dízima de  $x \rightarrow x = 1.43434343...$
- Multiplicamos por  $100 \to 100x = 143,434343...$
- Subtraindo a segunda igualdade da primeira, temos:

$$\begin{array}{ccc}
100x = 143,4343... \\
- x = 1,4343... \\
99x = 142 \\
x = \frac{142}{99}
\end{array}$$

Podemos escrever uma dízima periódica usando reticências ou uma barra em cima do período da dízima.

Exemplo:  $a)\frac{1}{9} = 0,\overline{1}$   $b)\frac{16}{99} = 0,\overline{16}$ 

$$b)\frac{16}{99} = 0,\overline{16}$$

## AGORA,

1- Determine a fração geratriz de:

$$a) 0, \overline{5} =$$

$$b)1,15 =$$

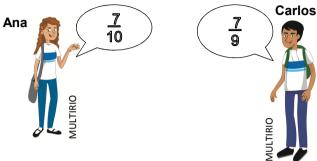
2- Complete o quadrado mágico, sabendo que a soma das linhas (horizontais), das colunas (verticais) e das diagonais é igual a 30.

|                | <u>17</u><br>3 |      | 9 |
|----------------|----------------|------|---|
| 19 3           |                | 8    |   |
| <u>23</u><br>3 | 7              | 20 3 |   |
| 6              | 9              |      |   |



Esse espaço é seu.

3- Carlos e Ana estudam na mesma turma. Na semana passada, eles tiveram que determinar a geratriz da dízima periódica 0,777... Observe o que cada um respondeu:



Quem acertou?

Esse espaço é seu.

- a) Ana acertou.
- b) Carlos acertou.
- c) Os dois acertaram.
- d) Os dois erraram.

4- Resolva a expressão: 1,333... + 0,666... + <u>2</u>

Esse espaço é seu.



4

## Números racionais (Q) na reta numérica

Como vimos anteriormente, todo número racional pode ser representado na sua forma decimal. Como existe uma relação de ordem em  $\mathbb{Q}$ , podemos localizar o número racional na reta real.

Por exemplo, o número  $\frac{-3}{2}$  está entre -2 e -1, pois  $\frac{-3}{2}$  = -1,5

-5 também está entre -2 e -1, pois -5 = -1,25

 $\frac{7}{2}$  está entre 0 e 1, pois  $\frac{7}{2}$  = **0,777...**  $\cong$  **0,8** 

Como localizar, aproximadamente, na reta, números como: 0,261 e 1,427?

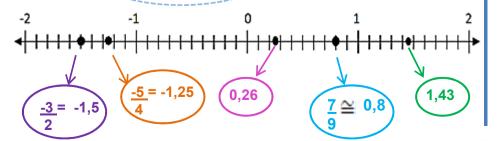
Se o algarismo a ser eliminado for menor que cinco, devemos manter inalterado o algarismo da esquerda.

**Aproximadamente** 

 $0,261 \cong 0,26$ 

Se o algarismo a ser eliminado for maior ou igual a cinco, acrescentamos uma unidade ao primeiro algarismo que está situado à sua esquerda.

$$1,427 \cong 1,43$$

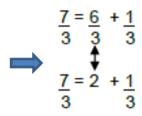


#### Analisando de outra forma...



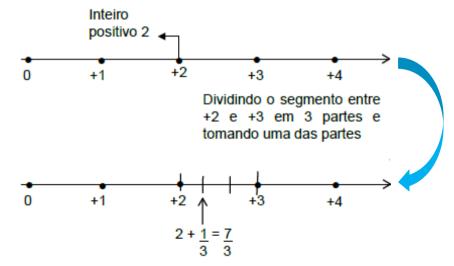
Vamos localizar, na reta numérica, a seguinte fração: 7/3.

Porém, antes, devemos entender o seguinte desenvolvimento:



Perceba que  $\frac{7}{3}$  é igual a dois inteiros, mais  $\frac{1}{3}$ .

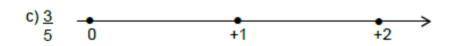
Então, basta dividir o segmento entre 2 e 3 em 3 partes iguais e tomarmos uma parte. Observe a construção.

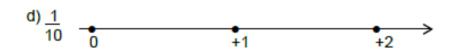


1- Subdivida o segmento, entre cada inteiro, de forma apropriada e localize, na reta numérica, cada racional apresentado abaixo.









2- Observe a reta numérica:



A dizima periódica 0,999... esta representada pelo ponto:

3- Escreva os números abaixo em ordem crescente e dê sua localização aproximada na reta numérica:

$$-\frac{3}{8}$$
,  $\frac{3}{3}$ ,  $\frac{7}{6}$ ,  $-\frac{7}{10}$ 

Esse espaço é seu.

4- Dentre os racionais abaixo, indique o número maior do que 2 e menor do que 7.

a) 0.3



c) 0,6

d) 0,8

Esse espaço é seu.

## Números Irracionais (I)

## Relembrando...



Como já vimos, no bimestre anterior, o que é um número irracional, que tal realizar algumas atividades para relembrar?

Boa ideia!



MULTIRIC

Sabemos que  $\sqrt{4}$  <  $\sqrt{5}$  <  $\sqrt{6}$  <  $\sqrt{7}$  <  $\sqrt{8}$  <  $\sqrt{9}$ 

Isto quer dizer que  $~2<\sqrt{5}<\sqrt{6}<\sqrt{7}<\sqrt{8}<3$ 

Logo, as raízes  $\sqrt{5}$ ,  $\sqrt{6}$ ,  $\sqrt{7}$  e  $\sqrt{8}$  são números entre 2 e 3. No entanto, por mais que tentemos, nunca chegaremos aos valores exatos desses números.

Assim, \_\_\_\_\_, \_\_\_\_, são exemplos de números irracionais.

Confira, na calculadora, as raízes desses números.

O número  $\sqrt{5}$  é um número irracional pois, ao extrair sua raiz quadrada, obtemos o seguinte resultado: 2,23606797749979... (*infinito* e *não há período*). Para indicarmos sua localização, na reta numérica, usaremos uma aproximação com <u>uma casa decimal</u>: \_\_\_\_\_\_.

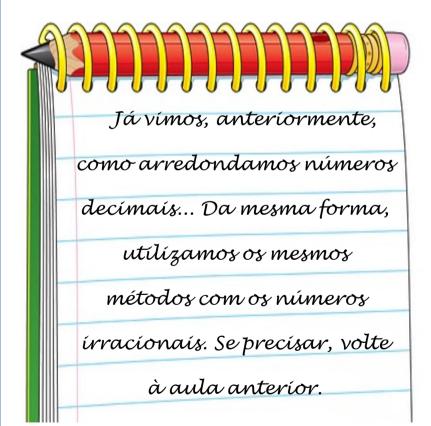
## FIQUE LÍGADO!!!

Os números irracionais possuem infinitas casas decimais sem período.

Outro número irracional, muito usado na Geometria, é o  $\pi$ (pi), resultado da divisão do comprimento de uma circunferência pelo seu diâmetro.

 $\pi$  = 3,141592653589793238462...

Por mais que se continue dividindo, a conta não termina e não se formam períodos. Então, ao se fazer os cálculos em Geometria, utiliza-se um valor aproximado de  $\pi$  com duas casas decimais:





1- Extraia a raiz quadrada com o uso da calculadora e realize a aproximação com duas casas decimais. Depois, com apenas uma casa decimal.

| $\sqrt{}$       | Resultado da<br>calculadora | 2 casas<br>decimais | 1 casa<br>decimal |
|-----------------|-----------------------------|---------------------|-------------------|
| $\sqrt{3}$      | 1,732050808                 | 1,73                | 1,7               |
| √11             |                             |                     |                   |
| $\sqrt{23}$     |                             |                     |                   |
| $\sqrt{34}$     | -                           |                     |                   |
| √ <del>71</del> |                             |                     |                   |

- 2- Qual a afirmação verdadeira?
- a)  $\sqrt{10}$  é racional e  $\sqrt{100}$  é racional.
- b)  $\sqrt{10}$  é irracional e  $\sqrt{100}$  é racional.
- c)  $\sqrt{10}$  é racional e  $\sqrt{100}$  é irracional.
- d)  $\sqrt{10}$  é irracional e  $\sqrt{100}$  é irracional.



3- (SARESP) Observe a reta numérica:



Os números A, B e C são, respectivamente:

a)  $-\frac{15}{10}$ ; -0.6;  $\sqrt{2}$ b) -1.5;  $\frac{6}{10}$ ;  $\sqrt{2}$ c) 1.5; 0.6; 1.5d) 1.5;  $\sqrt{2}$ ;  $\pi$ 

4- Ana vai participar de uma corrida noturna de bicicleta. Cada participante deverá identificar sua bicicleta com uma fita adesiva fluorescente, colada no pneu dianteiro, contornando-o. Quanto Ana precisa comprar de fita se o raio de sua bicicleta mede 32 cm? No mínimo, 200,96 cm.



## Números Racionais (Q) e Irracionais (I)

Podemos organizar os resultados de raízes em dois conjuntos: o dos **números racionais** e o dos **números irracionais**.

Fácil! Os números irracionais possuem infinitas casas decimais sem período. Como números racionais, temos os números decimais exatos, as dízimas periódicas e as frações:

0,45; 3,222... e  $\frac{7}{9}$ 



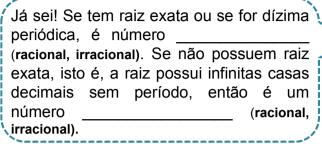
Em parte, você acertou. O decimal exato, a dízima e a fração são mesmo números racionais. Mas os inteiros também são.



Números como  $\sqrt{110}$ ,  $\sqrt{6}$ ,  $\sqrt{10}$ ,  $\sqrt{8}$  ... não apresentam um período que se repita na parte decimal. Portanto o resultado dessas raízes não dá para escrever como fração.



Isso mesmo! E como não pode ser escrito na forma de fração, estas raízes quadradas **não** são elementos do conjunto dos números racionais. Elas fazem parte do conjunto dos **números irracionais.** 





AGORA, É COM VOCÊ

1- Vamos colocar as raízes quadradas nos retângulos correspondentes:

$$\sqrt{\frac{64}{25}} \quad \sqrt{100} \quad \sqrt{40} \quad \sqrt{36} \quad \sqrt{18} \\
\sqrt{2} \quad \sqrt{0,36} \quad \sqrt{3} \quad \sqrt{16} \quad \sqrt{10}$$

| Números racionais | Números irracionais |
|-------------------|---------------------|
|                   |                     |
|                   |                     |
|                   |                     |
|                   |                     |
|                   |                     |



- 2- A condição para que um número seia racional é que ele possa ser escrito na forma de . .
- 3- Responda às questões abaixo. Em caso positivo, escreva um exemplo.
- a) O número 1,57 pode ser escrito na forma de fração?
- b) O número 9 pode ser escrito na forma de fração?
- c) O número 0 ,444... pode ser escrito na forma de fração?
- d) Podemos afirmar que os números 10, -9,  $\pi$  = 3,141516... e 0,444... são todos números racionais? Por quê?

### Recapitulando...

Os conjuntos numéricos também possuem símbolos próprios.

Nos anos anteriores, você já conheceu:

 $\mathbb{N} \to \mathsf{Conjunto} \ \mathsf{dos} \ \mathsf{números} \ \underline{\hspace{1cm}}$ .

 $\mathbb{Z} \to \mathsf{Conjunto} \; \mathsf{dos} \; \mathsf{números} \; .$ 

Neste ano. estamos

 $\mathbb{Q} o \mathsf{Conjunto}$  dos números \_\_\_\_\_.

estudando:  $\mathbb{I} \rightarrow \text{Conjunto dos números}$ 

Existem outros símbolos matemáticos que relacionam:

- elementos com conjuntos → ∈ OU ∉ (pertence- n\u00e3o pertence)
- conjunto com conjunto → cou ⊄ (contido – não contido)

Assim, podemos escrever:

$$\sqrt{16}$$
 \_  $\mathbb{Q}$   $\sqrt{\frac{49}{81}}$  \_  $\mathbb{Q}$   $\sqrt{2}$  \_  $\mathbb{I}$ 

$$\sqrt{3}$$
 \_  $\mathbb{Q}$   $\sqrt{0,09}$  \_  $\mathbb{I}$   $\sqrt{9}$  \_  $\mathbb{I}$ 

$$\mathbb{N} = \mathbb{Q} \quad \mathbb{Z} = \mathbb{I}$$

4- Coloque os números em ordem crescente:

1.353535...

 $-\sqrt{2}$ 

Esse espaço é seu.



Para facilitar, use a reta numérica!

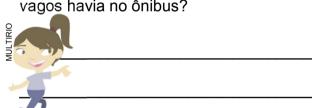
## Tratamento da informação

#### Interpretando placas de orientação

1- Observe a imagem abaixo, pintada no espaço de uma vaga de estacionamento. Qual a finalidade deste sinal?

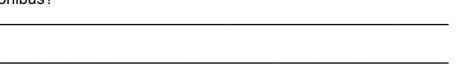


- 2- Observe a placa que há em um ônibus:
- a) No ônibus em que Bia entrou, havia 25 passageiros sentados. Quantos assentos vagos havia no ônibus?

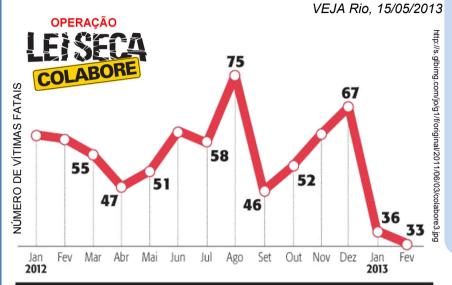




b) Após algumas estações, todos os assentos estavam ocupados e ainda havia dez passageiros em pé. Se não descer nenhum passageiro, quantas pessoas ainda podem entrar no ônibus?



"Punições mais rigorosas nas operações da Lei Seca derrubam o número de mortes no trânsito carioca".



http://veiario.abril.com.br/imagem/2013/virio2321/lei-seca-02.ipg

3- Comparando, no gráfico acima, o número de mortes de dezembro/2012 e fevereiro/2013, quanto diminuiu? Podemos afirmar que caiu pela metade?

4- Na sua opinião, a operação "Lei Seca" contribuiu para diminuir o índice de acidentes no trânsito? De que forma você poderia contribuir para melhorar o trânsito em sua cidade?

## Recapitulando... Expressões algébricas



As expressões algébricas possuem letras e números, ligados por operações de adição, de subtração, de multiplicação ou de divisão.

Podemos realizar cálculos com essas letras! veja alguns exemplos.



> Resolvendo a expressão (x + 4) + 2y, para x = 2 e y = 4, substituímos cada letra pelo valor informado:

> Resolvendo a expressão 2(3x-1)+7y(x+2), para x=3 e y=5:

$$2(3. -1) + 7. (+2) =$$

$$2(\underline{\hspace{1cm}} -1) + 35.(5) = 2.\underline{\hspace{1cm}} + 35.5 =$$

Entendi! Eu substituo as letras pelo **valor** informado. Depois, resolvo como se fosse uma expressão numérica, respeitando as regras de resolução de expressões.



1- Calcule o valor numérico das expressões:

$$a)3x^{2}-2\sqrt{y}$$
, para  $x = 1 e y = 4$ 

$$b)b^2 - 4ac$$
, para b = 4, a = 2 e c = -3

$$(c)x^2 - y$$
 ,para  $x = -2 e y = -5$ 

$$d)x^{2} - 3x$$
, para  $x = 3$ 

Esse espaço é seu. -----

A **expressão algébrica** é composta por letras e números ligados pelos sinais de operação.

#### Exemplos:

 $3x \longrightarrow$  o triplo de um número.

 $x + 1 \longrightarrow$  o sucessor de um número inteiro.

 $(a + b)^2 \longrightarrow$  o quadrado da soma de dois números.

2- Realize o cálculo da expressão algébrica:

Calcule o valor numérico  $de \frac{x^2 - 3y}{y^2 + 5x}, para$  x = -4 e y = -2.

Esse espaço é seu. - ·

3- Atualmente, Julia tem  $\boldsymbol{x}$  anos. Diga o que significam as seguintes expressões:

- a) 2*x* \_\_\_\_\_
- b) x 2 \_\_\_\_\_
- c) x + 5 \_\_\_\_\_
- d) 2(x + 5)

4- Complete:

| у     | 0 | 5 | 0,8 |   |
|-------|---|---|-----|---|
| 9 - y |   |   |     | 0 |

| Z  | 0 | 4 | 0,7 |    |
|----|---|---|-----|----|
| 5z |   |   |     | 21 |

5- Calcule o valor numérico de cada expressão algébrica:

a) 
$$2x + 7y$$
, para  $x = 3$  e  $y = 1$ .

b) 
$$x^2 - 2x + y$$
, para  $x = 3$  e  $y = 2$ .

c) 
$$7(x+4)-2y-5z$$
, para  $x = 1$ ,  $y = 2$  e  $z = 4$ .

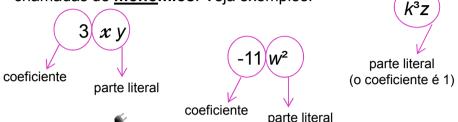
d) 
$$\sqrt{x} + y - 7z$$
, para  $x = 36$ ,  $y = 7$  e  $z = 4$ 

.- Esse espaço é seu. ·-·-·-·---

## Monômios e polinômios

As expressões algébricas aparecem em fórmulas e em equações.

As expressões algébricas que possuem um único termo são chamadas de **monômios**. Veja exemplos:



FIQUE LÍGADO!!!

**Monômio** ou termo algébrico é toda expressão algébrica que representa apenas multiplicações ou divisões de números e letras. Ex.:  $8 x = 4 x^2 y$ 

**Polinômio**\* é toda expressão algébrica formada por um ou mais monômios. Ex.:  $5 x^2 + 2 x - 3$  e 4y - 2z + 7m.

Polinômios, com dois termos, são chamados de e polinômios com três termos são chamados de Para reconhecê-los, primeiro, reduzimos os termos semelhantes, quando existirem.

**Monômios semelhantes** são aqueles que possuem a mesma parte literal.

\*Glossário: poli - [Do grego "polus"] - Têrmo que entra na composição de várias palavras; designativo de : número indefinido e elevado.



Vamos completar a tabela?

| MONÔMIOS         | COEFICIENTE | PARTE<br>LITERAL |
|------------------|-------------|------------------|
| 11ab             |             | ab               |
|                  | -9          | b <sup>3</sup>   |
| 0,8 <i>x</i> y   |             |                  |
| $\frac{1}{3}b^3$ |             |                  |

Os *monômios semelhantes* são:

Vamos analisar dois casos de *polinômios* que possuem termos semelhantes. Vamos reduzir o "tamanho" deles:

$$3x^{2} + 5x + 2x^{2} + 3x =$$

$$(\underline{\qquad} + \underline{\qquad})x^{2} + (\underline{\qquad} + \underline{\qquad})x = \underline{\qquad}x^{2} + \underline{\qquad}x$$

$$2 x^{2}y^{3} + 6 x + 3y + 8 x^{2}y^{3} + 2 x - y =$$

$$(\underline{\qquad} + \underline{\qquad}) x^{2}y^{3} + (\underline{\qquad} + \underline{\qquad}) x + (\underline{\qquad} - \underline{\qquad}) y =$$

**Algo a mais**: os prefixos bi e tri indicam quantidades. Bi  $\equiv 2$  e tri  $\equiv 3$ . Exemplo:  $tricampe\~ao$ , três vezes campeão; bicenten'ario, dois séculos.

Expressões



#### Que tal realizar algumas atividades?



1- Classifique os polinômios abaixo de acordo com a quantidade de termos (monômio, binômio ou trinômio):

- a) 3x 1: d) 2x + 7:

- b)  $9 x^2 y^3 z$ : \_\_\_\_\_ e)  $3 x^2 + 7 x 4r$ : \_\_\_\_
- c) 3x + 2y 5:

2 – Reduza os termos semelhantes e classifique os polinômios em relação ao número de termos (monômio, binômio ou trinômio):

a) 
$$7x + 3y + 2x + 5y + 3 =$$

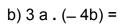
Esse espaço é seu·

#### FIQUE LIGADO!!!

Coordenadoria de Educação

Se temos dois monômios, semelhantes ou não, podemos obter um novo monômio pela multiplicação dos dois. Então, usamos as propriedades da multiplicação e da potenciação. Observe:

$$9x^{2}.(5x^{3}) = (9.5).(x^{2}.x^{3}) = 45x^{5}$$



- c)  $(5x) \cdot (6x) =$
- Se temos dois monômios, sendo o segundo diferente de zero, podemos dividir o primeiro pelo segundo (se na divisão existir variáveis iguais). Então, usamos a propriedade da divisão de potências de mesma base. Observe:

## FIQUE LIGADO!!!

#### Propriedades das potências

$$a^{m}$$
.  $a^{n} = a^{m+n}$ 

$$a^m: a^n = a^{m-n}$$

$$(a^m)^n = a^{m,n}$$

$$(a:b)^n = a^n:b^n$$

$$(a.b)^n = a^n.b^n$$

$$\frac{21 \ x^3 \ y}{7 \ xy} = \frac{21}{7} \cdot \frac{x^3}{x} \cdot \frac{y}{y} = 3 \cdot x^{3-1} \cdot 1 = 3 \ x^2$$

3 - Reduza os termos semelhantes e simplifique se for possível:

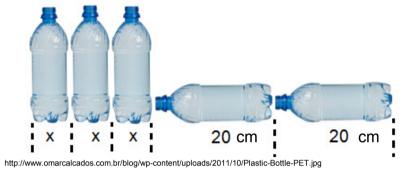
$$a)\frac{30x^4}{5x} =$$

b) 
$$\frac{5a}{15b} =$$

$$c)\frac{-40x^2yz^3}{-4x^2y^2z^2} =$$



4- Escreva um polinômio que represente a extensão das garrafas, dispostas de acordo com a figura abaixo. As medidas estão em centímetros.



5- Efetue as adições e as subtrações de monômios semelhantes:

| a) $8x^3 + 4x^3 - 2x^3 =$ | d) $x^2y + x^2y =$                  |
|---------------------------|-------------------------------------|
| b) 17ab – 6ab =           | $e)\frac{4}{3}xy - \frac{1}{5}xy =$ |
| c) 3a²b² – 4a²b² =        |                                     |

#### Como calcular $(y + 5) \cdot (y + 6)$ ?

Vamos observar em um exemplo numérico:

$$(10 + 2) \cdot (10 + 4) = 12 \cdot 14 = 168$$
  
Ou  $(10 + 2) \cdot (10 + 4) = 10 \cdot 10 + 10 \cdot 4 + 2 \cdot 10 + 2 \cdot 4 = 100 + 40 + 20 + 8 = 168$ 

Voltando ao exemplo algébrico...

$$(y + 5) \cdot (y + 6) = y^2 + y \cdot 6 + 5 \cdot y + 30 =$$

$$y^2 + 11 \cdot y + 30$$

Propriedade distributiva da multiplicação em relação á adição: a (b + c) = a b + a c

6- Teste suas habilidades na multiplicação de polinômios.

| a) $(x + 2)(x + 3) =$ | c) $(y + 6)(y - 6) =$   |
|-----------------------|-------------------------|
| b) $(2x-5)(3x-2) =$   | d) $(xy - 7)(xy + 6) =$ |

16

## Variáveis e incógnitas

Gustavo recebe um salário fixo de R\$ 600,00, mais um adicional de R\$ 70,00 por dia trabalhado no final de semana. Usando uma expressão e chamando de **d** a quantidade de dias trabalhados nos fins de semana e **t** para o valor total recebido no mês, obtemos:

$$t = 600 + d \times 70$$
.

Podemos perceber, que as letras também são usadas na Matemática. Essas letras são chamadas de *variáveis*. As variáveis representam números.



## r fique lígado!!!-

A parte da Matemática que utiliza letras que representam números chama-se **Álgebra**.

Veja outra situação:

1 - Anderson trabalha em uma agência de carros. Ele recebe, mensalmente, um salário fixo de R\$ 800,00 e mais R\$ 100,00 por carro que consegue vender.



a) Mês passado, Anderson vendeu cinco carros. Ele recebeu o salário fixo de R\$ \_\_\_\_\_ mais R\$\_\_\_\_\_, em um total de R\$

b) Esse total pode ser calculado usando a expressão numérica → 800 + \_\_\_\_\_ x 100 = \_\_\_\_\_.
c) A expressão numérica que indica o salário final de Anderson, com a venda de 8 carros, é \_\_\_\_\_ + 8 x \_\_\_\_ = \_\_\_.
d) Podemos generalizar esta situação, escrevendo uma expressão que permita calcular o salário de Anderson para qualquer quantidade de carros vendidos. Indicando o salário total por t e o número de carros vendidos por c,

temos a seguinte expressão  $\rightarrow$  t = + x .

#### Recapitulando...

As expressões que usam letras, na sua formação são chamadas de **expressões algébricas**.



Carlos precisou pegar um táxi. Quando entrou no veículo, o taxímetro marcava R\$ 4,70.

- 2 Esse valor é relativo à bandeirada (valor inicial a ser pago pelo passageiro ao entrar no táxi). Além desse valor, o passageiro paga R\$ 2,50 por quilômetro percorrido.
- a) Se ele percorrer 3 quilômetros, o valor a ser pago será de \_\_\_\_\_ + 2,50 x \_\_\_\_ , num total de reais.

| b) Se el  | e per    | correr 5 quilô | metro | os, o v | alor a | a ser pa  | go s | erá d  | de |
|-----------|----------|----------------|-------|---------|--------|-----------|------|--------|----|
|           | _ + 2    | ,50 x          | , num | total d | le     |           | rea  | is.    |    |
| c) Pode   | mos      | generalizar    | essa  | situa   | ção,   | usando    | q    | oara   | а  |
| quantida  | de de    | quilômetros    | roda  | dos e   | t para | a o valor | tota | al a s | er |
| pago: t = | <u> </u> | + 2,50         | x     |         |        |           |      |        |    |
| Portan    | to, a    | expressão      | algé  | brica   | que    | represe   | enta | ess    | sa |

Fonte: 1° Seminário Inte

Coordenadoria de Educação

situação, é

A escola de Ana fará uma excursão a Petrópolis, que fica a 90 km do Rio de Janeiro.

Fonte: 1º Seminário Internacional de Educação Matemática / SME-RJ/ 2011. Oficina "Proporcionalidade e Funções" , Prof.º Lucia Tinoco. Questão adaptada.

- 3 A companhia de ônibus cobrará R\$ 500,00 pelo aluguel do ônibus e mais R\$ 10,00 por aluno.
- a) Se 30 alunos participarem da excursão, quanto será pago à companhia? 500 + \_\_\_\_\_ x 30 = R\$ \_\_\_\_.
- b) Caso 40 alunos participem, a companhia receberá + 10 x = R\$
- c) Indicando por  ${\bf v}$  o valor total a ser pago à companhia e o número de alunos que irão ao passeio por  ${\bf a}$ , podemos generalizar a situação escrevendo a expressão algébrica:

| d) Se a escola pagar R\$ 850 | 0,00 à companhia de ônibus, |
|------------------------------|-----------------------------|
| podemos concluir que         | alunos participarão         |
| da excursão.                 |                             |

Esse espaço é seu. \_\_\_\_\_.

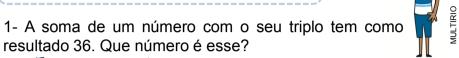




As **váriáveis** são letras que representam números, e que, como o prório nome diz podem variar de acordo com a situação. A incógnita é basicamente um valor desconhecido, que poderá ser descoberto por meio da resolução de uma equação. Na situação 3, por exemplo, no item c, as letras **v** e **a** são variáveis, enquanto no item d, a letra a é uma incógnita.

## Equações de 1.º grau - Revisão

A partir das próximas atividades, vamos relembrar as equações de 1.º grau.



Esse espaço é seu.

2 – Marta comprou 2 kg de arroz e 3 kg de feijão, sendo que o quilo do feijão custa R\$ 2,00 mais caro que o do arroz. Sabendose que Marta gastou R\$ 16,00 no total da compra, qual o preço do kg do arroz?

E do feijão?

Esse espaço é seu.

3 – Verifique se x = 3 é raiz da equação 2x + 4 = 0. Em caso negativo, calcule a raiz desta equação.

Esse espaço é seu.

4- A base de um triângulo isósceles tem 4 cm a mais que os outros dois lados. Se o perímetro desse triângulo é de 28 cm, determine as medidas dos seus lados.

Esse espaço é seu.

## Equações indeterminadas



Preciso comprar 5 garrafas de suco. As opções de sabores são caju e uva. De quantas maneiras posso fazer a compra de 5 garrafas?

Chamaremos o número de garrafas de suco de caju de  $\mathbf{x}$  e de  $\mathbf{y}$  o número de garrafas de suco de uva. Como são 5 garrafas, temos a igualdade x + y = 5.

Sua ideia parece boa! Porém, observe: a equação que você criou para a situação-problema tem mais de uma solução.



| <i>x</i><br>caju | y<br>uva | <i>x</i> + y |
|------------------|----------|--------------|
| 0                | 5        | 5            |
| 1                |          |              |
|                  | 3        |              |
|                  |          |              |
| 4                |          |              |
|                  |          |              |

Tente verificar quantas são as soluções possíveis!



São \_\_\_\_ soluções possíveis!



Parabéns! Neste caso, o problema tem 6 soluções. Mas mesmo assim, um número determinado de soluções.

Falando assim, parece até que existem equações que possuem infinitas soluções...





E existem! Imagine só a equação x + y = 5! Utilize números racionais para resolvê-la.

Vejamos: x + y = 5; com x e y pertencendo ao conjunto dos números racionais ( $x,y \in \mathbb{Q}$ ). As soluções podem ser as da tabela anterior, além de muitas outras. Observe estes exemplos:



| x  | у    | <i>x</i> + y |
|----|------|--------------|
| 0  | 5    | 5            |
|    | 3,8  |              |
|    | 3,75 | 5            |
|    | 3,6  |              |
| -3 |      |              |

-FIQUE LIGADO!!!

No conjunto dos números racionais, as possibilidades de resoluções podem ser infinitas. Equações que possuem uma infinidade de soluções são chamadas de **equações indeterminadas**.



$$3x + 7 = 3x - 11$$

$$3x - 3x = -11 - 7$$

$$0x = -18$$

A solução desta equação é impossível, pois não existe nenhum número, que multiplicado por zero, seja – 18.



1- Classifique as equações como possíveis, indeterminadas ou impossíveis.

a) 
$$2x = 3 + 7$$

b) 
$$3x + 2y = 19$$

c) 
$$3b + m - 3b - m = 21$$

d) 
$$4 + 2K = 2(K + 2)$$

e) 
$$\frac{3}{2}x = 9$$

gébricas

Expressões

Esse espaço é seu.

c)

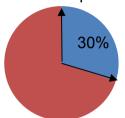
*i* a)

b)

Tratamento da informação

AGORA. É COM VOCÊ

No finais de semana, uma empresa de ônibus opera com apenas 30% da capacidade de sua frota.





O gráfico representa esta situação. Este gráfico é conhecido como gráfico de (barras / setores) circulares.

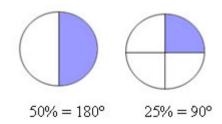
Para construir um gráfico de setores, levamos em conta que o total, em percentual, é expresso por e que o ângulo de uma volta vale 360°.

Então, temos uma correspondência entre esses fatos:

Coordenadoria de Educação

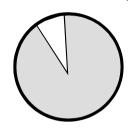
Então:  

$$100 \cdot x = 360 \cdot 30$$
  
 $x = \frac{360 \cdot 100}{100} = 36 \cdot 3 = 108^{\circ}$ 



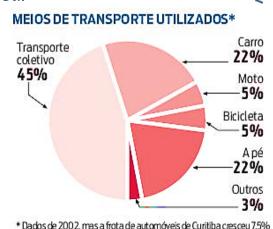
1- Sabendo que determinado gráfico abaixo transmite a informação de que em um dia da semana esta empresa de ônibus operou com apenas 90% de sua frota, qual o valor do ângulo referente à parte pintada?

.- Esse espaço é seu.



2- De acordo com a pesquisa representada no gráfico a seguir, o meio de transporte mais utilizado corresponderia a que ângulo?

Esse espaço é seu. \_ . \_ . \_ . \_ . \_ . \_ . \_ . \_ .



\* Dados de 2002, mas a frota de automóveis de Curitiba cresceu 7,5% ao ano, o que muda a porcentagem de usuários de carro e de moto.

## Ângulos

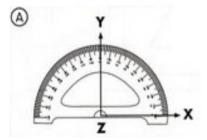


Você já estudou sobre ângulos? Vamos relembrar...

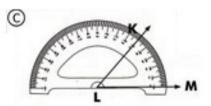
## Recapitulando...

Ângulo é a abertura formada por duas semirretas. Os ângulos podem ser classificados como

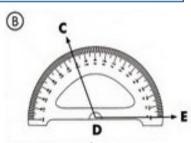
- \*retos (medem 90°);
- ❖agudos (medem menos de 90°);
- ❖obtusos (medem mais de 90°);
- \*rasos (medem 180°).



O ângulo  $y\hat{z}x$  classifica-se como ângulo \_\_\_\_\_



O ângulo  $k \hat{l} m$  classifica-se como ângulo .



O ângulo  $\hat{cde}$  classifica-se como ângulo



O ângulo  $\hat{prq}$  classifica-se como ângulo

#### ÂNGULOS ADJACENTES



são consecutivos e não possuem pontos internos comuns.

#### ÂNGULOS COMPLEMENTARES



a soma de suas medidas é igual a

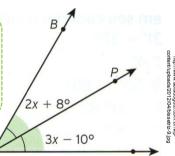
#### ÂNGULOS SUPLEMENTARES



a soma de suas medidas é igual a \_\_\_\_\_.

#### **Bissetriz**

Eu me lembro! A bissetriz é a semirreta que possui origem no vértice do ângulo e o divide em dois ângulos congruentes.





Observando a imagem acima, qual a medida do ângulo AÔB, se OP é bissetriz de AÔB?



Espaço e forma

ogo

Como BÔP e AÔP são ângulos congruentes, logo

$$2x + 8^{\circ} =$$
 $2x - 3x = -10^{\circ} - 8^{\circ}$ 

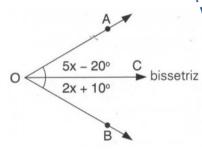
$$A\hat{O}P = 3.18^{\circ} - 10^{\circ} = 44^{\circ}$$

# spaço e forma



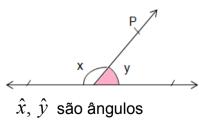
- 1- O ângulo complementar a um ângulo de 23° mede
- 2- Se um ângulo medir 20°, o seu suplemento medirá
- 3- A soma de um ângulo reto com um ângulo agudo resulta em um ângulo (agudo / reto / obtuso).
- 4- Na imagem abaixo, qual a medida do ângulo AÔB?

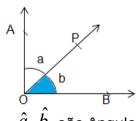
Esse espaço é seu·



http://www.auladoguto.com.br/wpcontent/uploads/2012/04/bissetriz-31-300x228.jpg

5- Observando...



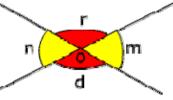


 $\hat{a},\hat{b}$  são ângulos



Há outras classificações de ângulos que podem nos ajudar no cálculo de medidas de ângulos. Observe:

São os **ângulos** opostos pelo vértice(O.P.V.). Acertei?



estibular.com.br/materias/matemat ce\_arquivos/angulosopv\_01.gif



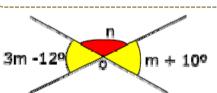
Dois **ângulos opostos pelo vértice** são aqueles cujos lados que formam um dos ângulos são prolongamentos dos lados de outro ângulo.

Na figura acima os ângulos o.p.v. são

 $\hat{r},\,\hat{d}\,$  e  $\hat{n},\,\hat{m}$ . Portanto, os ângulos r e d são congruentes, assim como os ângulos n e m também são congruentes.

Vamos praticar! Os ângulos abaixo são o.p.v.

Qual a medida de  $\hat{m}$  e  $\hat{n}$ ?



$$m = _{-}$$



Perceba que n e m + 10° são suplementares.

$$n + m + 10^{\circ} = 180^{\circ}$$

$$n + 21^{\circ} = 180^{\circ}$$



Na figura abaixo, m e n são retas **paralelas**. E a reta r é transversal a elas.

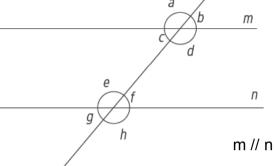
Ficam determinados oito ângulos:

#### Ângulos internos:

 $\hat{c}, \hat{d}, \hat{e}, \hat{f}$ 

#### Ângulos externos:

 $\hat{a}, \hat{b}, \hat{g}, \hat{h}$ 



Os ângulos  $\hat{b}$ ,  $\hat{f}$  são chamados **ângulos correspondentes:** estão do mesmo lado da transversal, um externo e o outro interno. Observe que são **congruentes**.

Os ângulos  $\hat{c}$ ,  $\hat{g}$  também são correspondentes, pois atendem às mesmas características.

Há mais dois pares de ângulos correspondentes na figura.

Identifique-os: e

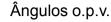
Conhecendo a medida de um dos ângulos,  $\hat{a} = 120^{\circ}$ , por exemplo, podemos determinar a medida dos demais.  $\hat{a} = \hat{e} = 120^{\circ}$  (ângulos correspondentes)

 $\hat{a} + \hat{b} = 180^{\circ}$  (ângulos suplementares)

$$120^{\circ} + \hat{b} = 180^{\circ} \rightarrow \hat{b} = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

 $\hat{b} = \hat{f} = 60^{\circ}$  (ângulos correspondentes)

Glossário: colateral - do mesmo lado que.



 $\hat{a} = \hat{d} = 120^{\circ}$ 

 $\hat{b}$ = $\hat{c}$ =60°

 $\hat{e}$ = $\hat{h}$ =120°

 $\hat{f} = \hat{g} = 60^{\circ}$ 

Vamos investigar um pouco mais?



Registrando...

Entre ângulos, use o símbolo de congruentes ( ≡ ).

 $\hat{a} \equiv \hat{e}$  (angulos correspondentes)

 $\hat{a} \equiv \hat{d}$  (ângulos opostos pelo vértice)

Então  $\hat{e} = \hat{d}$  (ângulos alternos internos)



São chamados **alternos** porque estão um de cada lado da transversal.

Então  $\hat{a} = \hat{h}$  (ângulos alternos externos)

Observe que  $\hat{c} + \hat{e} = 180^{\circ} e \hat{d} + \hat{f} = 180^{\circ}$ :

 $\hat{c},\hat{e} \,$  e  $\hat{d},\hat{f}$  são chamados de ângulos **colaterais internos**.

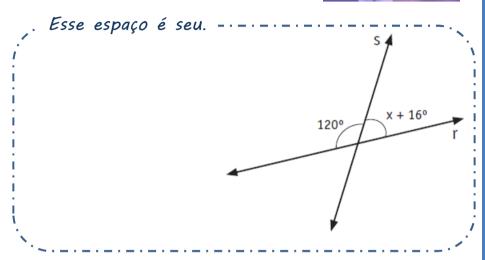
De acordo com a figura, complete a tabela com os pares de ângulos:

| ALTERNOS<br>INTERNOS | ALTERNOS<br>EXTERNOS  | COLATERAIS<br>INTERNOS | COLATERAIS<br>EXTERNOS |
|----------------------|-----------------------|------------------------|------------------------|
| ê, â                 | $\hat{a}$ , $\hat{h}$ | $\hat{c},\hat{e}$      |                        |
|                      |                       | $\hat{d},\hat{f}$      |                        |

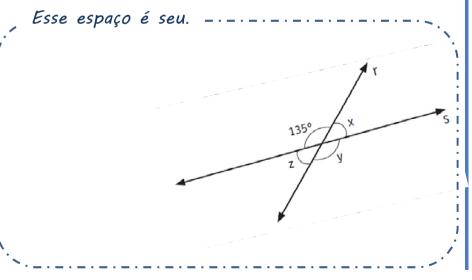
Visite a



1- Determine o valor de x:



2- Determine o valor de x, y e z:

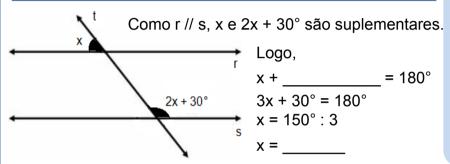


#### Recapitulando...

**Retas paralelas** são as que mantêm sempre a mesma distância entre elas.

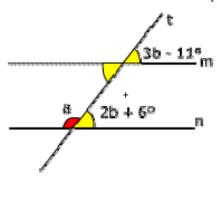
Retas concorrentes são retas que se cruzam.

**Retas perpendiculares** são aquelas que se cruzam, formando ângulos retos (90°).



3- Sendo m // n, determine o valor de a e b:

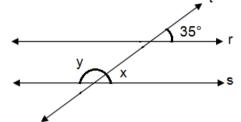
Esse espaço é seu. . \_ . \_ . \_ .



Visite a

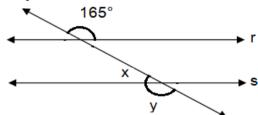
4- Sabendo que r // s, determine os ângulos indicados por x e y:

a)



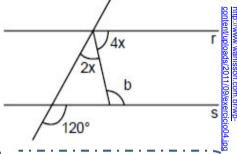
Esse espaço é seu.

b)



Esse espaço é seu.

5- Sendo r // s, determine o valor de b:



Esse espaço é seu.

6- (Vunesp) Uma tira de papel retangular é dobrada ao longo da linha tracejada, conforme indicado na figura da esquerda, formando a figura plana da direita.

O valor de x é:

- a) 60°.
- b) 70°.
- c) 80°. d) 90°.

55°

Espaço e forma

Esse espaço é seu.

1- O gráfico nos mostra a distribuição dos alunos de uma escola, nos seus três turnos: manhã, tarde e noite.

Se esta escola possui 1 500 alunos, quantos alunos estudam no período da noite?



Esse espaço é seu.

2- Como já sabemos, atividade física é fator importante, essencial na vida de uma pessoa. Além de ajudar em tratamentos hormonais, melhorar o condicionamento físico, aliviar o estresse e ajudar a perder peso, traz também muitos outros benefícios à saúde e ao bem-estar.



Porém, uma pesquisa revela que os esportes de quadra e a bicicleta estão perdendo espaço entre os jovens brasileiros. Observe o gráfico a seguir:



http://4.bp.blogspot.com/\_fb9bojQbm0w/TQS\_nS4wgQI/AAAAAAAABLA/oAhWsk7cLsM/s1600/grafico%2Bdo%2Bodia.jpg

a) De acordo com o índice de prática esportiva realizada em escolas de diferentes países da América Latina, qual o país que tem o índice mais alto? Qual a taxa?

b) Que esporte recebe destaque com 50% de preferência, perdendo apenas para o videogame?

c) De 2003 a 2010, em que porcentagem diminuiu a quantidade de crianças que andam de bicicleta? Considerando um total de 10 000 crianças, calcule quantas crianças deixaram de andar de bicicleta neste período.



## Polígonos



**Polígonos** são figuras fechadas, formadas por segmentos de retas consecutivos e não-colineares. Os segmentos de retas que limitam os polígonos são chamados de **lados**.

Também designamos por polígonos, as regiões planas limitadas por polígonos.

**Polígonos regulares**: possuem os lados e os ângulos com medidas iguais.

**Polígonos convexos**: seus ângulos *internos* são menores que 180°.

**Polígonos não convexos**: quando possuem um ângulo *interno* com medida maior que 180°.



O nome de um polígono é dado de acordo com o número de lados.



Um polígono com 12 lados recebe o nome de dodecágono.

Um polígono com 15 lados recebe o nome de **pentadecágono**.

Um polígono com 20 lados recebe o nome de icoságono.

| Polígono | Nº de<br>lados | Nome do<br>polígono | Nº de<br>vértices |
|----------|----------------|---------------------|-------------------|
|          | 3              | Triângulo           | 3                 |
|          | 4              | Quadrilátero        | 4                 |
|          |                | Pentágono           |                   |
|          |                |                     | 6                 |
|          |                | Heptágono           |                   |
|          |                | Octógono            |                   |
|          |                | Eneágono            |                   |
|          |                |                     | 10                |

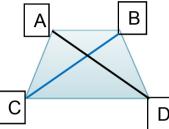
### ELEMENTOS DE UM POLÍGONO



Diagonal é o segmento de reta que liga dois vértices não consecutivos de um polígono.

Nesta figura, os lados são os segmentos de reta:

 $\overline{AB}$ ,  $\overline{BD}$ ,  $\overline{CD}$  e  $\overline{AC}$ 



- 1- Complete, de acordo com o que você observou no polígono:
- a) Os vértices consecutivos ao vértice A são os vértices B e C. Ligando-os ao **A**, temos os lados ABeAC.

Portanto, a única diagonal que se pode traçar a partir do **vértice**  $\mathbf{A}$  é a que vai até o vértice . Temos a diagonal AD.

b) Os vértices consecutivos ao vértice **B** são os vértices e

. Ligando-os ao vértice **B**, temos os lados BA e BD.

Então, para traçar a diagonal que parte de B, você deverá fazer um segmento de **B** até , formando a diagonal  $\overline{BC}$ 

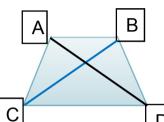
2- Nas figuras a seguir, nomeie o polígono, representando seus

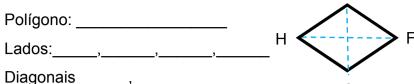
lados e suas diagonais.

Polígono:

Lados:

|           | <br> | ——· | <br>- |
|-----------|------|-----|-------|
| Diagonais | <br> |     |       |





## FIQUE LÍGADO!!!

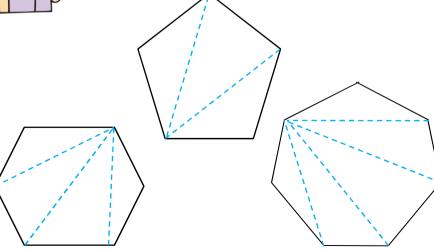
A notação de um segmento de reta é dada pelas letras maiúsculas que representam suas extremidades. tracando-se uma barra em cima delas, em qualquer ordem.

Exemplo:  $\overline{AD}$  e  $\overline{DA}$  representam o mesmo segmento.

Essas extremidades são os vértices do polígono.



Vamos escolher um vértice em cada um dos polígonos. A seguir, desenhe as diagonais que podem ser traçadas a partir desse vértice escolhido.





Agora, tendo por base as diagonais, desenhadas nos polígonos da página anterior, podemos completar a tabela abaixo. Vamos lá?

| Polígono     | Número de<br>vértices | Número de<br>diagonais que<br>partem de cada<br>vértice | n° de vértices X<br>nº de diagonais<br>de cada vértice |
|--------------|-----------------------|---------------------------------------------------------|--------------------------------------------------------|
| Triângulo    | 3                     | zero                                                    | 3 X 0 = 0                                              |
| Quadrilátero |                       |                                                         | 4 X 1 = 4                                              |
| Pentágono    |                       |                                                         | 5 X 2 = 10                                             |
| Hexágono     |                       |                                                         | 6 X 3 = 18                                             |
| Heptágono    |                       |                                                         | 7 X 4 = 28                                             |

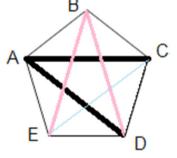
## FIQUE LÍGADO!!!

Para traçar uma diagonal, partindo de um dos vértices de um polígono, não podemos usar os dois vértices consecutivos a ele, nem o próprio vértice. **No total, não podemos utilizar três vértices.** 

Isso quer dizer que, partindo-se de um dos vértices de um polígono, com n lados, com n vértices, é possível traçar n – 3 diagonais. Assim, podemos calcular o número total de diagonais que partem de cada vértice a partir da expressão \_\_\_\_\_\_.



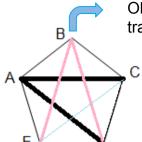
Observe o pentágono e complete: A



- a) Do vértice A, é possível traçar
- 2 diagonais.
- b) Do vértice B, é possível traçar \_\_\_\_\_ diagonais.
- c) Do vértice C, é possível traçar apenas mais \_\_\_\_\_ diagonal, pois a diagonal que parte de A até C, é a mesma que vai de C até A.
- d) Dos vértices D e E, não é possível traçar mais diagonais.
   As duas diagonais já foram traçadas.

Então, verificamos que, nesse polígono, traçamos um total de \_\_\_\_ diagonais. Visite a





Observamos que, de cada vértice, é possível traçar duas diagonais.

Como o pentágono tem cinco vértices, isso ocorrerá duas vezes em cada vértice. Portanto 2 x 5 = 10, totalizando 10 diagonais.

Se há diagonais com as mesmas extremidades  $(\overline{AD} \ e \ \overline{DA})$  a quantidade de diagonais distintas se reduz à metade. Então, verificamos que, nesse, polígono podem ser traçadas cinco diagonais.

Assim temos: 
$$d = \frac{n(n-3)}{2}$$

Na página anterior, verificamos que o pentágono tem 5 diagonais. Através da fórmula, teremos o mesmo resultado:

$$d = \frac{n(n-3)}{2} = \frac{5(5-3)}{2} = \frac{5(2)}{2} = \frac{10}{2} = 5$$

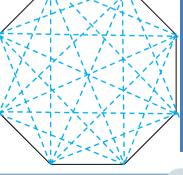
AGORA, É COM VOCÊ

1- Quantas diagonais há em um octógono?

Eu tentei traçar todas para contar, mas estava dando muito trabalho, são muitos vértices!

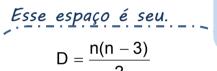


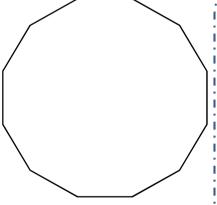
A fórmula vai facilitar os cálculos...



- a) O octógono tem \_\_\_\_\_ lados e \_\_\_\_\_ vértices.
- b) De um dos vértices, podemos traçar (n −3) diagonais, que nesse caso são diagonais.
- c) Como são \_\_\_\_\_ vértices, seriam \_\_\_\_ x ( \_\_\_\_ 3) diagonais, totalizando diagonais.
- d) Mas, por não contarmos as diagonais com a mesma extremidade duas vezes, precisamos dividir por 2. Portanto, teremos \_\_\_\_\_ : 2 = \_\_\_\_\_ diagonais.
- 2- Quantas diagonais há em um dodecágono?

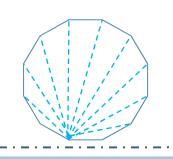
Escolha um vértice e trace apenas as diagonais deste vértice





Há \_\_\_\_\_ diagonais.

Mostre como resolveu e registre o caminho que escolheu para determinar a quantidade de diagonais desse polígono.

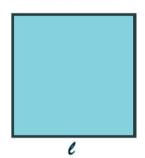


## Recapitulando...

Perímetro e Área

ÁREA DAS PRINCIPAIS FIGURAS PLANAS

#### Quadrado



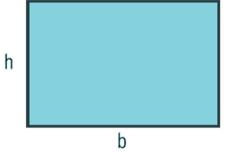
Perímetro - medida de comprimento do contorno da figura. Área - medida da região interna da figura.

$$\ell \to \mathsf{lado}$$

$$\mathsf{A} = \ell^2$$



e



 $b \rightarrow base$ 

 $h \to \text{altura}$ 

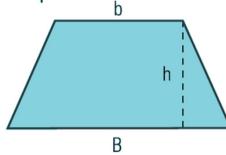
 $A=b\cdot h$ 

Paralelogramo



 $A=b\cdot h$ 

#### Trapézio

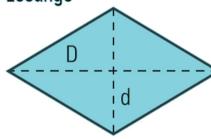


 $b \rightarrow base menor$ 

 $B \rightarrow base maior$ 

$$A = \frac{(B+b) \cdot h}{2}$$

#### Losango

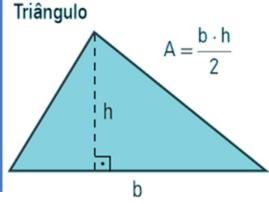


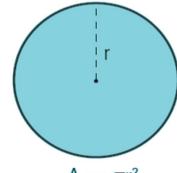
 $\mathsf{d} \to \mathsf{diagonal} \ \mathsf{menor}$ 

 $\mathsf{D} \to \mathsf{diagonal}\ \mathsf{maior}$ 

$$A = \frac{D \cdot d}{2}$$

#### Círculo



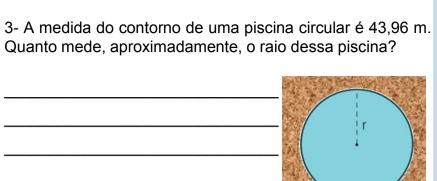


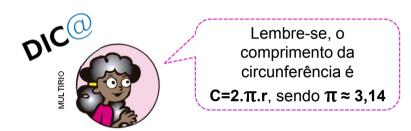
 $A = \pi r^2$ 

Diâmetro = 2.r

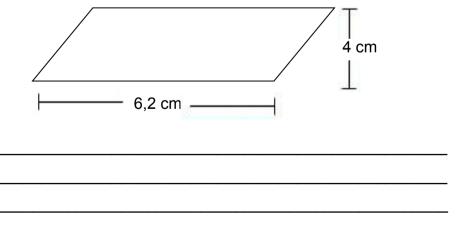


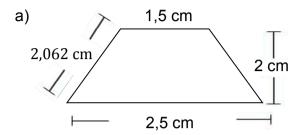
| 1- Lúcia comprou um terreno quadrado co                                             | m 324   | m² de área | l. |
|-------------------------------------------------------------------------------------|---------|------------|----|
| a) Quantos metros mede o seu perímetro                                              | ?       |            |    |
|                                                                                     |         |            |    |
|                                                                                     |         |            |    |
|                                                                                     |         |            |    |
| b) Qual será a área, em m², de um terr<br>medida do lado do terreno comprado por Lu |         | m o dobro  | da |
|                                                                                     |         |            |    |
|                                                                                     |         |            |    |
| 2- Escreva uma expressão simplificada perímetro do retângulo.                       | para    | o cálculo  | do |
|                                                                                     |         | 4 x        | _  |
|                                                                                     |         |            | x  |
| Se a área for 144, qual o perímetro do retá                                         | àngulo? | )          | _  |
|                                                                                     |         |            |    |
|                                                                                     |         |            |    |
|                                                                                     |         |            |    |

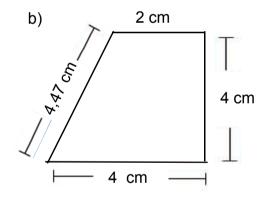




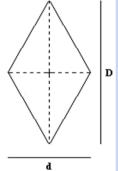
4- Qual a área do paralelogramo abaixo?





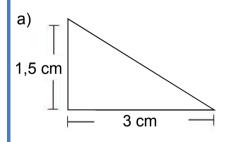


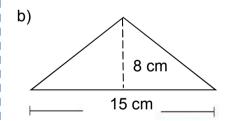
6- Calcule a área de um losango cuja diagonal menor mede 6 cm e a diagonal maior mede o dobro da diagonal menor.

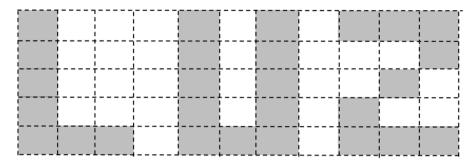


Se um dos lados mede  $5\sqrt{3}$ cm, qual o perímetro deste losango?

7 - Calcule a área dos triângulos a seguir:

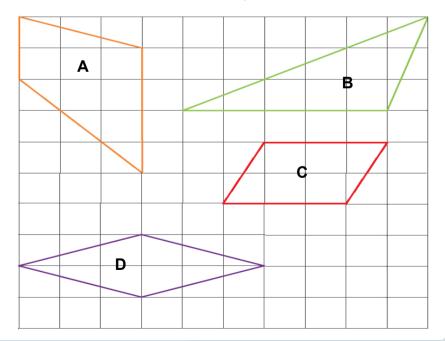






9- Calcule a área de cada uma das regiões planas limitadas por polígonos.

Utilize, como unidade de área, a quadrícula de 1 cm de lado.



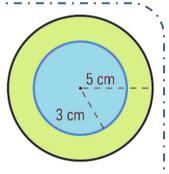
| Α | В | С | D |
|---|---|---|---|
|   |   |   |   |

Esse espaço é seu.

10- A figura a seguir representa o esboço de um jardim circular. No meio, será construído um lago e, em volta do lago, o chão será gramado. Quantos m² de grama serão necessários?

Esse espaço é seu.

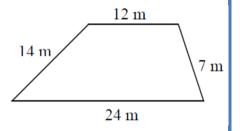
**DIC** Considere  $\pi = 3,14$ 



e forma

# Recapitulando...

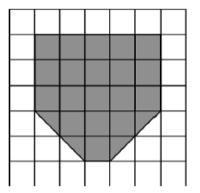
1- A figura representa um terreno. O proprietário quer cercá-lo com três voltas de arame farpado. Sabendo que o metro do arame farpado custa R\$ 2,00, quanto o proprietário gastará?



Esse espaço é seu.

2- Observe a figura ao lado:

Considerando cada quadrinho da figura, como unidade de medida, a área da região pintada equivale a . .



Esse espaço é seu.

Coordenadoria de Educação

- 3- Cada um dos círculos a seguir, possui raio de 4 cm. A altura e a largura da pilha, respectivamente, medem:
- a) 8 cm e 16 cm.
- b) 16 cm e 8 cm.
- c) 16 cm e 32 cm.
- d) 32 cm e 16 cm.

Esse espaço é seu.

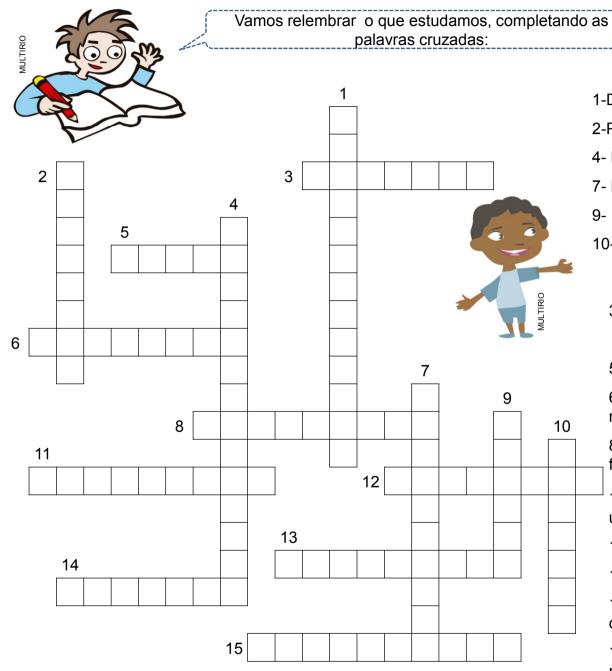
4- Uma piscina quadrada foi construída em um terreno retangular, conforme figura a seguir:

O proprietário deseja gramar todo o terreno em volta da piscina. Calcule quanto ele vai gastar, sabendo-se que o 1 m<sup>2</sup> de grama custa R\$ 5,60.



12 m

Esse espaço é seu.



#### **VERTICAIS**

- 1-Dois ângulos cuja soma resulta 180°.
- 2-Polinômio com três termos é chamado de...
- 4- Dois ângulos cuja soma resulta 90°.
- 7- Polígono de doze lados.
- 9- Ângulo com medida maior que 90°.
- 10- Operação inversa da multiplicação.

#### **HORIZONTAIS**

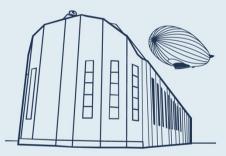
- 3- Ângulos \_\_\_\_\_ pelo vértice (O.P.V.) são congruentes.
- 5- Ângulo com medida menor que 90°.
- 6- Segmento de reta que liga dois vértices não consecutivos de um polígono.
- 8- A soma das medidas do contorno de uma figura plana é denominada .
- 11- Na expressão x + 2 = 10, x só admite um único valor, portanto recebe o nome de...
- 12- Fração que gera a dízima periódica.
- 13- Polígono que possui 5 lados.
- 14- Tipo de gráfico com formato de um círculo.
- 15-Número que tem infinitas casas decimais não periódicas.



#### Pão de Açúcar



Cristo Redentor



Hangar do Zeppelin



Maracanã

# Dicas de estudo

- Tenha um espaço próprio para estudar.
- O material deve estar em ordem, antes e depois das tarefas.
- Escolha um lugar para guardar o material adequadamente.
- Brinque, dance, jogue, pratique esporte... Movimente-se! Escolha hábitos saudáveis.
- Estabeleça horário para seus estudos.
- Colabore e auxilie seus colegas em suas dúvidas. Você também vai precisar deles.

- Crie o hábito de estudar todos os dias.
- Consulte o dicionário sempre que precisar.
- Participe das atividades propostas por sua escola.
- Esteja presente às aulas. A sequência e a continuidade do estudo são fundamentais para a sua aprendizagem.
- Tire suas dúvidas com o seu Professor ou mesmo com um colega.
- Respeite a si mesmo, a todos, a escola, a natureza... Invista em seu próprio desenvolvimento.

Valorize-se! Você é um estudante da Rede Municipal de Ensino do Rio de Janeiro. Ao usar seu uniforme, lembre-se de que existem muitas pessoas, principalmente seus familiares, trabalhando para que você se torne um aluno autônomo, crítico e solidário. Acreditamos em você!